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Abstract

Recent studies have demonstrated theoretical attractiveness of a class of concave penal-
ties in variable selection, including the smoothly clipped absolute deviation and minimax
concave penalties. The computation of concave penalized solutions, however, is a difficult
task. We propose a majorization minimization by coordinate descent (MMCD) algorithm
for computing the concave penalized solutions in generalized linear models. In contrast to
the existing algorithms that use local quadratic or local linear approximation for the penalty
function, the MMCD seeks to majorize the negative log-likelihood by a quadratic loss, but
does not use any approximation to the penalty. This strategy makes it possible to avoid
the computation of a scaling factor in each update of the solutions, which improves the effi-
ciency of coordinate descent. Under certain regularity conditions, we establish the theoretical
convergence property of the MMCD. We implement this algorithm for a penalized logistic
regression model using the SCAD and MCP penalties. Simulation studies and a data exam-
ple demonstrate that the MMCD works sufficiently fast for the penalized logistic regression
in high-dimensional settings where the number of covariates is much larger than the sample
size.

Keywords: Logistic regression, minimum concave penalty, p� n models, smoothly clipped abso-
lute deviation penalty, variable selection
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1 Introduction

Variable selection is a fundamental problem in statistics. A subset of important variables is often

pursued to reduce variability and increase interpretability when a model is built. Subset selection

is generally adequate when the number of variables is small. By imposing a proper penalty on

the number of selected variables, one can perform subset selection based on AIC (Akaike (1974)),

BIC (Schwarz (1978)), or Cp (Mallows (1973)). However, when the number of variables is large,

subset selection is computationally infeasible.

For high-dimensional data, penalization has become an important approach for variable se-

lection in regression models. With a suitable penalty, this approach sets some coefficients to

be exactly zero, thus accomplishes the goal of variable selection. Several important penalization

methods have been proposed. Examples include the l1 penalized regression or the Least absolute

shrinkage and selection operator (Lasso) (Donoho and Johnstone (1994); Tibshirani (1996)), the

smoothly clipped absolute deviation (SCAD) penalty (Fan and Li (2001)) and the minimum con-

cave penalty (MCP) (Zhang (2010)). The SCAD and MCP are concave penalties that possess the

oracle properties, meaning that they can correctly select important variables and estimate their

coefficients with high probabilities as if the model were know in advance under certain sparsity

conditions and other appropriate regularity conditions.

Considerable progress has been made on computational algorithms for penalized regressions.

Efron et al (2004) introduced the LARS algorithm that can efficiently compute an entire solution

paths of the Lasso in a linear regression model. Fan and Li (2001) proposed a local quadratic

approximation (LQA) algorithm for computing the SCAD solutions. A drawback of LQA is that

once a coefficient is set to zero at any iteration step, it permanently stays at zero and the corre-

sponding variable is then removed from the final model. Hunter and Li (2005) suggested using the

majorization-minimization (MM) algorithm to optimize a perturbed version of LQA by bounding

the denominator away from zero. How to choose the size of perturbation and how the perturbation

affects the sparsity need to be determined in specific models. Zou and Li (2008) proposed a local

linear approximation (LLA) algorithm for computing the concave penalized solutions of SCAD.

With the LLA, algorithms for the Lasso can be repeatedly used for approximating concave penal-

ized solutions. Schifano, Strawderman and Wells (2010) also used MM algorithm to generalize
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the idea of LLA to multiple penalties and proved the convergence properties of their minimization

by iterated soft thresholding (MIST) algorithm. Zhang (2010) developed the PLUS algorithm

for computing the concave penalized solutions, including the MCP solutions, in linear regression

models.

In the last few years, it has been recognized that the coordinate descent algorithm (CDA) can

be used to efficiently compute the Lasso solutions in p � n models (Friedman, Hastie, Höfling

and Tibshirani (2007); Wu and Lange (2008); Friedman, Hastie and Tibshirani (2010)). This

algorithm has a long history in applied mathematics and has roots in the Gauss-Siedel method for

solving linear systems (Warge (1963); Ortega and Rheinbold (1970); Tseng (2001)). The CDA

optimizes an objective function by working on one coordinate (or a block of coordinates) at a

time, iteratively cycling through all the coordinates until convergence is reached. It is particularly

suitable for the problems that have a simple closed form solution for each coordinate but lack

one in higher dimensions. CDA for a Lasso penalized linear regression model has shown to be

very competitive with LARS, especially in high-dimensional cases (Friedman, Hastie, Höfling

and Tibshirani (2007); Wu and Lange (2008); Friedman, Hastie and Tibshirani (2010)). Two

facts may explain the efficiency of coordinate descent. (1) It only takes O(np) operations to

cycle through all the coordinates; while the algorithms involving matrix inversion requires O(np2)

operations, whose computational burden increases dramatically when p is large. Further efficiency

is attained by using the closed form solution for each coordinate by avoiding iterative search.

(2) When computing a continuous solution surface, if the initial values are properly chosen, then

convergence can be obtained within a few iterations. Because in that situation, by the continuity,

the solution should not be far away from the initials.

Coordinate descent has also been used in computing the concave penalized solution paths

(Breheny and Huang (2010); Mazumder, Friedman and Hastie (2011). Breheny and Huang (2010)

observed that the CDA converges much faster than the LLA algorithm for various combinations

of the values of (n, p) and various designs of covariate matrices they considered. Mazumder,

Friedman and Hastie (2011) demonstrated that the CDA has better convergence properties than

the LLA. Breheny and Huang (2010) also proposed an adaptive rescaling technique to overcome

the difficulty due to the constantly changing scaling factors in the computation of MCP penalty.
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However, the adaptive rescaling approach can not be applied to the SCAD penalty and it is

not clear what is the effective concavity applied to the model beforehand. In this article, we

propose a majorization minimization by coordinate descent (MMCD) algorithm for computing

the concave penalized solutions in GLMs. The MMCD algorithm seeks a closed form solution

for each coordinate and avoid the computation of scaling factors by majorizing the loss function.

Under reasonable regularity conditions, we establish the convergence property of the MMCD

algorithm.

This paper is organized as follows. In Section (2) we define the concave penalized solutions

in GLMs. In Section (3) we describe the proposed MMCD algorithm, explain the benefits of

majorization and study its convergence property. We also compare the MMCD algorithm with

several existing algorithms in this section. In Section (4) we implement the MMCD algorithm in

concave penalized logistic regression models. In Section (5) we extend the MMCD algorithm to a

multinomial model. Concluding remarks are given in Section (6).

2 Concave Penalized solutions for GLMs

Let {(yi,xi)ni=1} be the observed data, where yi is a response variable and xi is a (p+1)-dimensional

vector of predictors. We consider a GLM model assuming that yi depends on xi through a linear

combination ηi = xTi β, where β = (β0, β1, ..., βp)
T ∈ Rp+1, whose density function given xi is

fi(yi) = exp{yiθi − ψ(θi)

φ
+ c(yi, φ)}. (1)

Here φ > 0 is a dispersion parameter. The form of the function ψ(θ) depends on the specified

model. For example, in a logistic regression model, ψ(θ) = log(1 + exp(θ)).

Consider the (scaled) negative log-likelihood as the loss function `(β), under the canonical link

function with θi = ηi, we have

`(β) ∝ 1

n

n∑
i=1

{ψ(xTi β)− yixTi β}. (2)

We assume {(xi0)ni=1} equals to one and β0 is the intercept and is not penalized. We also assume

that all the penalized variables are standardized, that is, ‖xj‖2/n = 1 with xj = (x1j, ..., xnj)
T , 1 ≤
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j ≤ p. The notation ‖v‖2 is the L2 norm of a n dimensional vector v. The standardization allows

the penalization to be evenly applied to each variable regardless of their scales.

Define the concave penalized criterion as

Q(β;λ, γ) =
1

n

n∑
i=1

{ψ(xTi β)− yixTi β}+

p∑
j=1

ρ(|βj|;λ, γ), (3)

where ρ is a penalty function. We consider two concave penalties, SCAD and MCP. The SCAD

(Fan and Li (2001)) is defined as

ρ(t;λ, γ) =


λ|t|, |t| ≤ λ;

γλ|t|−0.5(t2+λ2)
γ−1 , λ < |t| ≤ γλ;

λ2(γ2−1)
2(γ−1) , |t| > γλ,

(4)

with λ ≥ 0 and γ > 2. The MCP (Zhang (2010)) is defined as

ρ(t;λ, γ) = λ

∫ |t|
0

(1− x

γλ
)+dx =

 λ|t| − |t|
2

2γ
, |t| ≤ λγ;

λ2γ/2, |t| > λγ,
(5)

for λ ≥ 0 and γ > 1. Here x+ = x1{x ≥ 0} denotes the non-negative part of x. For both

SCAD and MCP, the regularization parameter γ controls the degree of concavity, with a smaller γ

corresponding to a penalty that is more concave. Both penalties begin by applying the same rate

of penalization as Lasso, and then gradually reduce the penalization rate to zero as |t| gets bigger.

When γ → ∞, both SCAD and MCP converge to the `1 penalty. When γ → 1, MCP converges

to the hard thresholding penalty, and when γ → 2, SCAD does not due to the transitional knot

at γ = 2. The SCAD and MCP penalties are illustrated in the middle and right panel of Figure 1.

Consider the thresholding operator defined as the solution to a penalized univariate linear

regression,

θ̂(λ, γ) = argmin
θ

{ 1

2n

n∑
i=1

(yi − xiθ)2 + ρ(θ;λ, γ)
}
.

Denote the univariate least squares solution by θ̂LS =
∑n

i=1 xiyi/
∑n

i=1 x
2
i . Denote the soft-

thresholding operator by S(t, λ) = sgn(t)(|t| − λ)+ for λ > 0 (Donoho and Johnstone (1994)).
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Then for the SCAD and MCP, θ̂(λ, γ) have a close form expression as follows,

For γ > 2, θ̂SCAD(λ, γ) =


S(θ̂LS, λ), |θ̂LS| ≤ 2λ,

γ−1
γ−2S(θ̂LS, λγ/(γ − 1)), 2λ < |θ̂LS| ≤ γλ,

θ̂LS, |θ̂LS| > λγ,

For γ > 1, θ̂MCP (λ, γ) =


γ
γ−1S(θ̂LS, λ), |θ̂LS| ≤ λγ,

θ̂LS, |θ̂LS| > λγ,
(6)

Observe that both SCAD and MCP use the LS solution if |θ̂LS| > λγ; MCP only applies a scaled

soft-thresholding operation for |θ̂LS| ≤ λγ while SCAD apply a soft-thresholding operation to

|θ̂LS| < 2λ and a scaled soft-thresholding operation to 2λ < |θ̂LS| ≤ λγ.

Figure 1 shows the penalty functions and the thresholding functions for Lasso (left panel),

SCAD (middle panel) and MCP (right panel), respectively, with the first row showing the penalty

functions and the second showing the thresholding operator functions. Lasso penalizes all the

variables without distinction. SCAD and MCP gradually reduce the rate of penalization for larger

coefficients.

3 Majorization Minimization by Coordinate Descent

3.1 The MMCD Algorithm

The MMCD algorithm applies a quadratic approximation to the loss function `(β) given the

current estimation β̃. For a model in the GLM family, this results in an iteratively reweighted

least squares (IRLS) form of the loss function. Hence, the loss function in (3) can be approximated

by

`(β|β̃) =
1

2n

n∑
i=1

wi(zi − xTi β)2, (7)

with wi(β̃) = ψ̈(xTi β̃) and zi(β̃) = ψ̈(xiβ̃)−1{yi − ψ̇(xTi β̃)} + xTi β̃, where ψ̇(θ) and ψ̈(θ) are the

first and second derivatives of ψ(θ) with respect to θ.

The MMCD algorithm updates the jth coordinate by treating the remaining coordinates as

fixed values. Let β̂
m

j = (β̂m+1
0 , ..., β̂m+1

j , β̂mj+1, ..., β̂
m
p )T . For the loss function (7), the MMCD
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updates β̂
m

j−1 to β̂
m

j by minimizing the criterion

β̂m+1
j = argmin

βj

Q(βj|β̂
m

j−1)

= argmin
βj

1

2n

n∑
i=1

wi(zi −
∑
s<j

xijβ̂
m+1
s − xijβj −

∑
s>j

xijβ̂
m
s )2 + ρ(|βj|;λ, γ), (8)

where wi and zi depend on (β̂
m

j−1,xi, yi). The jth coordinate-wise minimizer is computed by

taking derivative of Q(βj|β̂
m

j−1) w.r.t βj, which is

1

n

n∑
i=1

wix
2
ijβj + ρ

′
(|βj|)sgn(βj) =

1

n

n∑
i=1

wixij(zi − xTi β̂
m

j−1) +
1

n

n∑
i=1

wix
2
ijβ̂

m
j , (9)

where ρ
′
(|t|) is the first derivative of ρ(|t|) with respect to |t| and sgn(x) = 1,−1 or ∈ [−1, 1] for

x > 0, < 0 or x = 0.

For the MCP penalty, solving (9) for the jth coefficient we get

β̂m+1
j =


S(τj ,λ)

δj−1/γ , |τj| ≤ δjγλ,

τj
δj
, |τj| > δjγλ,

(10)

where δj = n−1
∑n

i=1wix
2
ij and τj = n−1

∑n
i=1wixij(zi − xTi β̂

m

j−1) + δjβ̂
m
j . In a linear regression

model, wi = 1 for i = 1, ..., n, thus the scaling factor δj , n−1
∑n

i=1wix
2
ij = 1 for standardized

predictors. In a GLM, however, the dependence of wi on (β̂
m

j−1,xi, yi) causes the scaling factor

δj to change from iteration to iteration. This is problematic because δj − 1/γ can be very small

and is not guaranteed to be positive. Thus direct application of coordinate descent may not be

numerically stable and can lead to unreasonable solutions.

To overcome this difficulty, Breheny and Huang (2010) proposed an adaptive rescaling ap-

proach, which uses

β̂m+1
j =


S(τj ,λ)

δj(1−1/γ) , |τj| ≤ γλ,

τj
δj
, |τj| > γλ,

(11)

for the jth coordinate-wise update. This is equivalent to apply a new regularization parameter

γ∗ = γ/δj to the MCP penalty at each coordinate-wise update in the iterations. Hence, the

effective regularization parameters are not the same for the penalized variables and not known

until the algorithm is converged. Numerically, the scaling factor δj requires extra computation.
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This is not desirable when p is large. For SCAD, adaptive rescaling cannot be adopted because the

scaled soft-thresholding operation only applies to the middle clauses of the three in the expression

of the SCAD thresholding.

The MMCD algorithm seeks to majorize the scaling factor δj, j = 1, ..., p . For standardized

predictors, this is equivalent to finding a uniform upper bound of the weights wi = ψ̈(xTi β), 1 ≤

i ≤ n. In principle, we can have a sequence of constants Ci such that Ci ≥ wi for i = 1, ..., n and

use Mj =
∑
Cix

2
ij/n to majorize the scaling factor δj. Due to the standardization, we can use a

single M to majorize all the p scaling factors. Note that in the GLM, the scaling factor δj is equal

to the second partial derivative of the loss function, i.e. ∇2
j`(β) =

∑
ψ̈(xTi β)x2ij/n =

∑
wix

2
ij/n.

Hence, a majorization of wi results in the majorization of ∇2
j`(β). For simplicity, we put the

boundedness condition, δj ≤M on the term ∇2
j`(β) rather than the individual wi.

For the MM algorithm, the majorization of the scaling factor δj is equivalent to finding a

surrogate function `(βj|β̂
m

j−1) with

`(βj|β̂
m

j−1) = `(β̂
m

j−1) +∇j`(β̂
m

j−1)(βj − β̂mj ) +
1

2
M(βj − β̂mj )2, (12)

when optimizing `(β) with respect to the jth coordinate, where the second partial derivative

∇2
j`(β) in the Taylor expansion is replaced by its upper bound M . Note that the majorization

is applied coordinate-wisely to better fit the coordinate descent approach. The descent property

of the MM approach ensures that iteratively minimizing `(βj|β̂
m

j−1) leads to a descent sequence

of the original objective function. For more details about the MM algorithm, we refer to Lange,

Hunter, and Yang (2000); Hunter and Lange (2004).

Given the majorization of the scaling factor, after some algebra, the jth (j = 1, ..., p) coordinate-

wise solutions of the criterion function are

SCAD: β̂m+1
j =


1
M
S(τj, λ), |τj| ≤ (1 +M)λ,

S(τj ,
γλ
γ−1

)

M− 1
γ−1

, (1 +M)λ < |τj| ≤Mγλ,

1
M
τj |τj| > Mγλ,

(13)

MCP: β̂m+1
j =


S(τj ,λ)

M−1/γ |τj| ≤Mγλ,

1
M
τj |τj| > Mγλ,

(14)
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with τj = Mβ̂mj + n−1
∑n

i=1 xij(yi − ψ̇(xTi β̂
m

j−1)). The solution to the non-penalized intercept is

β0 = τ0/M, (15)

with τ0 = Mβ̂m0 + n−1
∑n

i=1 xi0(yi − ψ̇(xTi β̂
m

j−1)).

In (13) and (14), we want to ensure the denominators in both expressions are positive, that

is, M − 1/(γ − 1) > 0 and M − 1/γ > 0. This naturally leads to the constraint on the the

penalty, inft ρ
′′
(|t|;λ, γ) > −M , where ρ

′′
(|t|;λ, γ) is the second derivative of ρ(|t|;λ, γ) with

respect to |t|. For SCAD and MCP, this condition is satisfied by choosing a proper γ. For

SCAD, inft ρ
′′
(|t|;λ, γ) = −1/(γ − 1); for MCP, inft ρ

′′
(|t|;λ, γ) = −1/γ. Therefore, we require

γ > 1 + 1/M for the SCAD and γ > 1/M for the MCP.

The MMCD algorithm can gain further efficiency by adopting the following tip. Let η =

(η1, ..., ηn)T and X = (xT1 , ...,x
T
n )T , and η̂mj = Xβ̂

m

j be the linear component corresponding to

β̂
m

j . Further efficiency can be achieved by using the equation

η̂mj+1 = η̂mj + xj+1(β̂m+1
j+1 − β̂mj+1) == η̂mj + (β̂

m

j+1 − β̂
m

j )xj+1. (16)

This equation turns a O(np) operation into a O(n) one. Since this step is involved in each iteration

for each coordinate, this simple step turns out to be significant in reducing the computational cost.

We summarize the MMCD algorithm as follows. Assuming the conditions below hold:

• (i). The second partial derivative of `(β) with respect to βj is uniformly bounded for

standardized X, i.e. there exists a real number M > 0 such that ∇2
j`(β) ≤M for j = 0, ..., p.

• (ii). inft ρ
′′
(|t|;λ, γ) > −M , with ρ

′′
(|t|;λ, γ) being the second derivative of ρ(|t|;λ, γ) with

respect to |t|.

The MMCD algorithm for a given (λ, γ) computes the concave penalized solution proceeds as

follows.

1. Given an initial value β̂
0
, compute the corresponding linear component η̂0.

2. For m = 0, 1, ..., update β̂
m

j to β̂
m

j+1 by using the solution in (13) or (14) for the penalized

variables and (15) for the intercept. After each iteration, also compute the corresponding linear

component η̂mj+1 using (16). Cycle through all the coordinates from j = 0, ..., p such that β̂
m

is
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updated to β̂
m+1

.

3. Check the convergence criterion . If converges then stop iterations, otherwise repeat step 2

until converges.

We use the convergence criterion ‖β̂m+1 − β̂m‖2/(‖β̂
m‖2 + 0.01) < ε. We choose ε = 0.001 in

our implementation.

3.2 Convergence Analysis

In this section, we present a convergence result for the MMCD algorithm. Theorem 1 establishes

that under certain regularity conditions, the MMCD algorithm always converges to a minimum

of the objective function.

Theorem 1. Consider the objective function in (3), where the given data (y, X) lies on a compact

set and no two columns of X are identical. Suppose the penalty ρ(|t|;λ, γ) ≡ ρ(t) satisfies ρ(t) =

ρ(−t), ρ
′
(|t|) is non-negative, uniformly bounded, with ρ

′
(|t|) being the first derivative (assuming

existence) of ρ(|t|) with respect to |t|. Also assume that conditions (i) and (ii) stated in the MMCD

algorithm hold.

Then the sequence generated by the MMCD {βm} converges to a minimum of the function

Q(β).

Note that the condition on (y, X) is a mild assumption. The standardization of columns of

X can be performed as long as the columns are not identically zero. The proof of theorem (1) is

provided in Appendix. It extends the work of Mazumder, Friedman and Hastie (2011) to cover

more general loss functions other than the least squares.

3.3 Comparison with other algorithms

The LQA (Fan and Li (2001)), perturbed LQA (Hunter and Li (2005)), LLA (Zou and Li

(2008)) and MIST (Schifano, Strawderman and Wells (2010)) algorithms share the same feature

in that they all use a surrogate function to majorize the concave penalty term ρ(|t|;λ, γ). The

optimization procedure is carried out by minimizing the objective function with the surrogate

penalty instead of the original penalty.
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3.3.1 LQA and perturbed LQA algorithms

The LQA uses the following approximation to the penalty,

ρ(|t|;λ, γ) ≈ ρ(|t0|;λ, γ) +
ρ
′
(|t0|;λ, γ)

2|t0|
(t2 − t20), for t ≈ t0. (17)

Then Newton-Raphson type iteration was employed to minimize the penalized criterion with the

surrogate penalty function. When t0 is close to zero, the algorithm is unstable. To avoid the

numerical instability, Fan and Li (2001) suggested that if β̂j is small enough, say |β̂j| < ε (a

pre-specified value), set β̂j = 0 and remove the jth variable from the iteration. A drawback of

LQA algorithm is that, if a variable is removed in an iteration, it will necessarily be excluded from

the final model.

Hunter and Li (2005) studied the convergence property of LQA and showed that LQA is a

type of MM algorithm with the SCAD penalty majorized by a quadratic function. Furthermore,

to avoid numerical instability, they proposed a perturbed version of LQA to majorize the LQA.

ρ(|t|;λ, γ) ≈ ρ(|t0|;λ, γ) +
ρ
′
(|t0|;λ, γ)

2|t0 + τ0|
(t2 − t20), for t ≈ t0. (18)

Practically, how to determine the size of τ0 is not easy since the size of τ0 could impact the speed

of convergence and the sparsity of the solution.

3.3.2 LLA and MIST algorithms

Zou and Li (2008) proposed a local linear approximation (LLA) for computing concave penalized

estimates. This approximation takes the form

ρ(|t|;λ, γ) ≈ ρ(|t0|;λ, γ) + ρ
′
(|t0|;λ, γ)(|t| − |t0|), for t ≈ t0. (19)

The LLA algorithm can be implemented by repeatedly using the algorithms for computing the

Lasso solutions such as the LARS. Schifano, Strawderman and Wells (2010) generalized the idea

of LLA to multiple penalties and linked the LLA to the soft-thresholding operation, and proposed

the MIST algorithm. However, the authors indicated that the MIST tends to converge at a slower

rate in the case of p > n.

The LQA, perturbed LQA, LLA and MIST can be viewed as the surrogate functions that

majorize the SCAD penalty. Figure 2 illustrate the three majorizations of SCAD. The left panel
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of Figure 2 is majorized at t = 3 while the right is majorized at t = 1. For perturbed LQA, we

choose τ0 = 0.5. In both plots, γ = 4 and λ = 2 are chosen for better illustration effect.

To apply these methods to the GLM, we need to approximate both the likelihood and the

penalty. This does not take full advantage of the coordinate descent algorithm. Indeed, the

approximation of the penalty requires additional iterations for convergence and is not necessary,

since exact solution exists when updating a single estimate in the coordinate descent. Thus in

our proposed algorithm, we use the exact form of the penalty and only majorize the loss function

to avoid the computation of scaling factor. Breheny and Huang (2010) reported that adaptive

rescaling technique is at least 100 times faster than the LLA algorithm. Therefore, we focus on

the comparison between the MMCD and the adaptive rescaling approach in the following section.

4 The MMCD for Penalized Logistic Regression

In this section, we implement the MMCD in the penalized logistic regression, which is one of the

most widely used models in biostatistical applications. In this model, the response y is a vector of

0 or 1 with 1 indicating the event of interest. The first and second derivatives of the loss function

are ∇j`(β̂) = −(xj)T (y− π̂)/n and ∇2
j`(β̂) = n−1

∑
wix

2
ij, with wi = π̂i(1− π̂i) and π̂i being the

estimated probability of ith observation given a current estimate β̂, i.e. π̂i = 1/(1 + exp(−xTi β̂)).

For any 0 ≤ π ≤ 1, we have π(1 − π) ≤ 1/4. Hence the upper bound for all the second partial

derivatives ∇2
j`(β̂) is M = 1/4 for standardized xj. Correspondingly τj = 4−1β̂j+n

−1(xj)T (y−π̂)

for j = 0, ..., p. By condition (ii), we require γ > 5 for SCAD and γ > 4 for MCP penalty.

4.1 Computation of Solution Surface

A common practice in applying the SCAD and MCP is to calculate the solution path in λ for

a fixed value of κ. For example, for linear regression models with standardized variables, it has

been suggested one uses γ ≈ 3.7 in the SCAD penalty (Fan and Li (2001)) and γ ≈ 2.7 (Zhang

(2010)) in the MCP. However, in generalized linear models including the logistic regression, these

values are not appropriate. Therefore, We use a data driven procedure to choose γ together with

λ. This requires the computation of solution surface over a two-dimensional grid of (λ, γ). We
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reparameterize κ = 1/γ to facilitate the description of the approach for computing the solution

surface. To meet the condition (ii) of MMCD algorithm, we require κ ∈ [0, κmax], where κmax = 1/5

for SCAD and κmax = 1/4 for MCP. Note that when κ = 0, both SCAD and MCP simplify to the

Lasso.

Define the grid values for a rectangle in [0, κmax) × [λmin, λmax] to be 0 = κ1 ≤ κ2 ≤ · · · ≤

κK < κmax and λmax = λ1 ≥ λ2 ≥ · · · ≥ λV = λmin. The number of grid points K and V are

pre-specified. In our implementation, the κ-grid points are uniform in normal scale while those

for λ are uniform in log scale. The λmax is the smallest value of λ such that β̂j = 0, j = 1, ..., p.

For logistic regression, λmax = n−1maxj|(xj)T (y − π̂)| with π̂ = ȳJ and J being a unit vector,

for every κk. We let λmin = ελmax, with ε = 0.0001 if n > p and ε = 0.01 otherwise. The solution

surface is then calculated over the rectangle [0, κmax)×[λmin, λmax]. We denote the MMCD solution

for a given (κk, λv) to be β̂κk,λv .

We follow the approach of Mazumder, Friedman and Hastie (2011) to compute the solution

surface by initializing the algorithm at the Lasso solutions on a grid of λ values. The Lasso

solutions correspond to κ = 0. Then for each point in the grid of λ values, we compute the

solutions on a grid of κ values starting from κ = 0, using the solution at the previous point as the

initial value for the current point. The details of the this approach are as follows.

(1) First compute the Lasso solution along λ. When computing β̂κ0,λv+1
, using β̂κ0,λv as the initial

value in the MMCD algorithm.

(2) For a given λv, compute the solution along κ. That is using β̂κk,λv as the initial value to

compute the solution β̂κk+1,λv
.

(3) Cycle through v = 1, ..., V for step (2) to complete the solution surface.

Figure (3) presents the solution paths of a causal variable (plot a) and a null variable (plot b)

along κ using the MCP penalty. Observe that although Lasso tends to over select in some cases,

it could fail to select certain variables, which are selected by MCP (dash line in plot a). This

could be a serious problem for Lasso if the missing predictor is a causal variable. Furthermore,

we observe that the estimates could change substantially when κ cross certain threshold values.

This justifies our treatment of κ as a tuning parameter since a pre-specified κ might not give the

optimal results. This is the reason that we use a data-driven procedure to choose both κ and λ.
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4.2 Design of simulation study

Denote the design matrix of the penalized variables as Z, which is the sub-matrix of X with the

first column removed. Let A0 ≡ {j ≤ p : βj 6= 0} be the set of causal variables and let p0 be the

dimension of A0. We set p = 1, 000 with p0 = 10. We fix β0 = 0.01 and the coefficients for A0 to

be (0.6,−0.6, 1.2,−1.2, 2.4,−0.6, 0.6,−1.2, 1.2,−2.4)T such that the signal-to-noise ratio (SNR),

defined as SNR =
√
βTXTXβ/n, is approximately in the range of (3, 4). The covariates are

generated from multivariate normal distributions. The outcomes y are generated from Bernoulli

distributions with yi ∼ Bernoulli(1, pi) for i = 1, ..., n. We set K = 20 and V = 100 in the

simulation.

We consider five types of correlation structures of Z. They are (1) Independent structure

(IN) among all the p penalized variables, i.e. V ar(Z) = Ip, with Ip being the identity matrix of

dimension p × p. (2) Separate structure (SP), i.e. the causal variables and the null variables are

independent, V ar(Z) = block diagonal(Σ0,Σ1), with Σ0 and Σ1 being the covariance matrix for

the causal variables A0 and the null variables A1, respectively. Within each set of variables, we

assume a compound symmetry structure for the variables. That is ρ(xij, xik) = ρ for j 6= k, j, k ∈

As, s = 0, 1. (3) Partial Correlated structure (PC), i.e. part of the causal variables are correlated

with the part of the null variables. Specifically, V ar(Z) = block diagonal(Σa,Σb,Σc), with Σa

being the covariance matrix for the first 5 causal variables; Σb being the covariance matrix for the

remaining 5 causal variables and 5 null variables; Σc being the covariance matrix for the remaining

null variables. We also assume a compound symmetry structure within Σa, Σb, Σc. (4) First-order

Autoregressive (AR1) structure, that is ρ(xij, xik) = ρ(|j−k|), for j 6= k, j, k = 1, ..., p; i = 1, ..., n.

(5) Compound Symmetry (CS) structure for all the variables. In our simulation, ρ = 0.5 in all

types of structures to present a median level of correlation.

4.3 Comparison of computational efficiency

The adaptive rescaling approach and the MMCD algorithm are applied to the same training

datasets. The computation is done on Inter Xeon CPU (E5440@2.83GHZ) machines with Ubuntu

system (Linux version 2.6). Table 1 reports the average time of computing the whole solution

surface for the MCP penalty measured in seconds based on 100 replicates for datasets with n = 100
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and p = 1, 000. In all the models explored, the MMCD is twice faster than the adaptive rescaling

approach. We expect that the MMCD will gain more efficiency when p gets larger.

4.4 Comparison of Lasso, SCAD and MCP by Simulation

In this section, we compare the empirical performance of Lasso, SCAD and MCP penalties in

penalized logistic regression models using the MMCD algorithm. Since we are not addressing

the issue of tuning parameter selection in this article, three penalties are compared based on the

model with the best predictive performance rather than the model chosen by any tuning parameter

selection approach. To fulfill this purpose, a large validation dataset with 2,000 observations

is generated from the same model simulating the training dataset. The solution surface over

the rectangle [0, κmax) × [λmin, λmax] is computed by the MMCD algorithm entirely based on the

training dataset. Given the solution surface β̂κk,λv , we compute the predictive Area Under ROC

Curve (P-AUC) for the validation set, AUC(κk,λv) for each β̂κk,λv . The well-known connection

between between AUC and the Mann-Whitney U statistics, Bamber (1975) is used for computing

the AUC:

AUC = max

{
1− U1

n1n2

,
U1

n1n2

}
,

with U1 = R1− (n1(n1 + 1)/2), where n1 is the number of observations with outcome yi = 1 in the

validation set, R1 is the sum of ranks for the observations with yi = 1 in the validation set. The

rank is based on the predictive probability of validation samples with π̂(κk, λv) computed from

β̂κk,λv . The model corresponding to the maximum predictive AUC(κk,λv) is selected as the final

model for comparison.

The results are compared in terms of model size (MS) defined as the total number of selected

variables; false discover rate (FDR), defined as the proportion of false positive variables (null

variables) among the total selected variables; the maximum predictive area under ROC curve

(AUC) of the validation dataset. Two sample sizes n = 100, 300 are explored and the results are

similar. For the sake of space, we only report the results of n = 100. The results reported below

are based on 1,000 replicates.

Table 2 presents the average and standard error of model size, FDR and the predictive AUC

of validation dataset. It seems that as a selection tool, Lasso is inferior to the concave penalty
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such as SCAD and MCP in the sense that it favors a larger model size, with a lower predictive

AUC and a higher FDR. This results is consistent with the theoretical results from Zhang and

Huang (2008). Our results also suggest that SCAD has a similar predictive performance but with

a slightly larger model size and a higher false discovery rate, compared to MCP.

4.5 Application to a Cancer Gene Expression Dataset

We further apply the penalized logistic regression model to a cancer study. The purpose of this

study is to discover the biomarkers associated with the prognosis of breast cancer (van’t Veer et al

(2002); Van de Vijver et al (2002)). Approximately 25, 000 genes were scanned using microarrays

for n = 295 patients. Metastasis within five years is modeled as the outcome. A subset of 1,000

genes with highest Spearman correlations to the outcomes are used in the penalized models to

stabilize the computation.

We first compare the predictive performance of the LASSO, SCAD and MCP. For the same

reason as in the simulation study, we do not resort to any tuning parameter selection procedure

to choose the model for comparison. Instead, we randomly partition the whole dataset n = 295

into a training (approximately 1/3 of the observations) and validation data (approximately 2/3

of the observations). The model fitting is solely based on the training dataset; The solution

corresponding to the maximum predictive AUC of the validation dataset is chosen as the final

model for further comparison. This split process is repeated for 900 times.

The results presented in table 3 are consistent with those from simulation. Lasso tends to

select a larger model. The SCAD and MCP perform very similarly. Their predictive AUCs in the

validation datasets are close to each other. Also, the sizes of the models selected by the SCAD

and MCP are almost the same.

4.6 Analysis results of the cancer study

We now present the results for the breast cancer study. We use the cross-validated area under

the ROC (CV-AUC) method for tuning parameter selection. This method uses a combination of

cross validation and ROC methodology. The logistic regression model is fitted based on a training

sample and the (predictive) AUC of the fitted model is calculated for the test sample. Both the
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training and test samples are created by the cross validation. Repeat the process for multiple

times to compute the average predictive AUC, which is defined as the CV-AUC. Models with

the highest CV-AUC are chosen as the final model. For details of using the CV-AUC for tuning

parameter selection in penalized logistic regression, we refer to Jiang, Huang, and Zhang (2011).

We use 5-fold cross validation to compute the CV-AUC.

For this dataset, Lasso penalty selects 101 variables with CV-AUC=0.7797, SCAD penalty

selects 26 variables with CV-AUC=0.7859 and MCP selects 24 variables with CV-AUC=0.7886.

All the 24 variables selected by MCP are also selected by SCAD. Among the 26 variables selected

by SCAD, only 2 are not selected by Lasso. The results are consistent with those of simulation.

In particular, the MCP selects a model with the highest CV-AUC with the smallest model.

5 Further example of the MMCD algorithm

When the outcome variable has K > 2 levels, the logistic model can be extended to a baseline-

category logit model. Let yik be the indicator of the outcome of the ith observation in the kth

level, k = 1, ..., K and xi be the corresponding covariates. The baseline-category logit model

assumes that

log(
πk(x)

πK(x)
) = xTβk, (20)

with πk(x) being the probability of the outcome in the kth level, and βk being the corresponding

coefficients. As in the case of Logistic regression, we assume βk ∈ Rp+1 and βk0 being the intercept

and not penalized.

Denote βT = (βT1 , ...,β
T
K−1) as the vector of regression coefficients. Given the structure of

(20), we have πk(x) = exp(xTβk)

1+
∑K−1
k=1 exp(xTβk)

. Hence the loss function for the multinomial case is

`(β) =
1

n
{

n∑
i=1

log{1 +
K−1∑
k=1

exp(xTi βk)} −
n∑
i=1

K−1∑
k=1

yikx
T
i βk}. (21)

Correspondingly, the penalized regression model for the multinomial outcome is

Q(β) =
1

n
{

n∑
i=1

log{1 +
K−1∑
k=1

exp(xTi βk)} −
n∑
i=1

K−1∑
k=1

yikx
T
i βk}+

K−1∑
k=1

p∑
j=1

ρ(|βkj|;λ, γ). (22)
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Take second derivative of `(β) w.r.t. βk, we have

∇2
k`(β) =

1

n

n∑
i=1

∑K−1
k=1 exp(xTi βk)

[1 +
∑K−1

k=1 exp(xTi βk)]
2
xTi xi (23)

Therefore, for the jth component in βk, the upper bound can be easily identified as

∇2
kj`(β) ≤

n∑
i=1

1/4x2
ij = 1/4.

Thus, we could still use M = 1/4 to meet the condition (ii) of the MMCD algorithm for the model.

However, because of the multinomial outcome, we need two levels of cycling in the implementation

of MMCD algorithm, first cycling through all the jth coordinates within βk, then cycling through

the k = 1, ...K − 1 to update β.

We below outline the MMCD approach for the concave penalized baseline-category logit model.

the MMCD Algorithm for the penalized baseline-category logit model

1. Given any initial value of β̂
0
, computing the corresponding linear component η̂1.

Outer cycling:

2. At step m = 0, 1, ..., update β̂
m

k to β̂
m+1

k by the inner cycling.

Inner cycling:

a. Given the current estimate of β̂
m

kj = (β̂m+1
k0 , ..., β̂m+1

kj , β̂mk(j+1), ..., β̂
m
kp), update the estimate

to β̂
m

k(j+1) = (β̂m+1
k0 , ..., β̂m+1

kj , β̂m+1
k(j+1), ..., β̂

m
kp) by using the solution in (13 or 14 ) for the penalized

variables and (15) for the intercept, with τkj = β̂mkj/4 + 1
n

∑n
i=1{

∑K−1
k=1 yik−

∑K−1
k=1 exp(xTi β̂k)

[1+
∑K−1
k=1 exp(xTi β̂k)]

2
}xij,

with β̂k being the latest estimate of βk. After each iteration, also update the corresponding linear

component.

b. Cycle through all the coordinate j = 0, ..., p such that β̂
m

k is updated to β̂
m+1

k .

3. Repeat the inner cycling and cycle through the k = 1, ..., K − 1 blocks of β, update β̂
m

to

β̂
m+1

.

4. Check the convergence criterion. If converges then stop the iteration, otherwise repeat step

2 and 3 until converge.
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6 Concluding Remarks

In this article, we propose an efficient and stable MMCD algorithm for computing the concave

penalized solutions in the GLMs. Unlike the existing MM algorithms for computing concave penal-

ized solutions, such as the LQA, LLA and MIST that majorize the penalty term, the MMCD seeks

a closed form solution for each coordinate by using the exact penalty term. The majorization is,

however, applied to the loss function to avoid the computation of the scaling factor. This approach

increases the efficiency of coordinate descent in high-dimensional settings. The convergence of the

MMCD algorithm is proved under certain regularity conditions.

A penalized logistic regression model is used to illustrate the MMCD algorithm. The com-

parison with adaptive rescaling approach indicates that the MMCD is more efficient in high-

dimensional settings. The results from the simulation and data analysis reveal the adequacy of

the MMCD algorithm in high-dimensional settings. Based on the MMCD solution of penalized

logistic regression, we compare Lasso penalty and the concave penalties including SCAD and MCP

for their empirical performance. The MCP has the best performance in terms of predictive AUC

and FDR in the simulated models we considered.

The application of the MMCD algorithm to the logistic regression is facilitated by the fact that

a simple and effective majorization function can be constructed for the logistic likelihood. However,

in some other important models in the GLM family such as the log-linear model, it appears that no

simple majorization function exists. One possible approach is to design a sequence of majorization

functions according to the solutions at each iteration. This is an interesting problem that requires

further investigation.

Acknowledgements The research of Huang is supported by NIH grants R01CA120988, R01CA142774

and NSF grant DMS 0805670.

SUPPLEMENTAL MATERIALS

R-package for MMCD Algorithm: R-package containing code to compute the concave pe-

nalized logistic regression, ‘cvplogistic’, is available at www.r-project.org (R Development

Core Team (2011).
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7 Appendix

To prove the following theorem, we first present a lemma.

Lemma 1. Suppose the data (y,X) lies on a compact set and the following conditions hold:

1. The loss function `(β) is (total) differentiable w.r.t. β for any β ∈ Rp+1.

2. The penalty function ρ(t) is symmetric around 0 and is differentiable on t ≥ 0; ρ
′
(|t|) is non-

negative, continuous and uniformly bounded, where ρ
′
(|t|) is the derivative of ρ(|t|) w.r.t. |t|.

3. The sequence {βk} is bounded.

4. For every convergent subsequence {βnk} ⊂ {βn}, the successive differences converge to zero:

βnk − βnk−1 → 0.

Then if β∞ is any limit point of the sequence {βk}, then β∞ is a minimum for the function

Q(β); i.e.

lim inf
α↓0+

{Q(β∞ + αδ)−Q(β∞)

α
} ≥ 0, (24)

for any δ = (δ0, ..., δp) ∈ Rp+1.

Proof. For any β = (β0, ..., βp)
T and δj = (0, ..., δj, ..., 0) ∈ Rp+1, we have

lim inf
α↓0+

{Q(β + αδj)−Q(β)

α
} = ∇j`(β)δj + lim inf

α↓0+
{ρ(|βj + αδj|)− ρ(|βj|)

α
}

= ∇j`(β)δj + ∂ρ(βj; δj), (25)

for j ∈ {1, ..., p}, with

∂ρ(βj; δj) =

 ρ
′
(|βj|)sgn(βj)δj, |βj| > 0;

ρ
′
(0)|δj|, |βj| = 0,

(26)

where

sgn(x) =


1, if x > 0;

−1, if x < 0;

any u ∈ (−1, 1), if x = 0.

Assume βnk → β∞ = (β∞0 , ..., β
∞
p ), and by assumption 4, as k →∞

βnk−1j = (βnk0 , ..., βnkj−1, β
nk
j , β

nk−1
j+1 , ..., βnk−1p )→ (β∞0 , ..., β

∞
j−1, β

∞
j , β

∞
j+1, ..., β

∞
p ) (27)

By (26) and (27), we have the results below for j ∈ {1, ..., p}.

∂ρ(βnkj ; δj)→ ∂ρ(β∞j ; δj), if β∞j 6= 0; ∂ρ(β∞j ; δj) ≥ lim inf
k

∂ρ(βnkj ; δj), if β∞j = 0. (28)
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By the coordinate-wise minimum of jth coordinate j ∈ {1, ..., p}, we have

∇j`(β
nk−1
j )δj + ∂ρ(βnkj ; δj) ≥ 0, for all k. (29)

Thus (28, 29) implies that for all j ∈ {1, ..., p},

∇j`(β
∞)δj + ∂ρ(β∞j ; δj) ≥ lim inf

k
{∇j`(β

nk−1
j )δj + ∂ρ(βnkj ; δj)} ≥ 0. (30)

By (25,30), for j ∈ {1, ..., p}, we have

lim inf
α↓0+

{Q(β∞ + αδj)−Q(β∞)

α
} ≥ 0. (31)

Following the above arguments, it is easy to see that for j = 0

∇0`(β
∞)δ0 ≥ 0. (32)

Hence for δ = (δ0, ..., δp) ∈ Rp+1, by the differentiability of `(β), we have

lim inf
α↓0+

{Q(β∞ + αδ)−Q(β∞)

α
} = ∇0`(β

∞)δ0

+

p∑
j=1

[∇j`(β
∞)δj + lim inf

α↓0+
{
ρ(|β∞j + αδj|)− ρ(|β∞j |)

α
}]

= ∇0`(β
∞)δ1 +

p∑
j=1

lim inf
α↓0+

{Q(β∞ + αδj)−Q(β∞)

α
}

≥ 0, (33)

by (31, 32).

This completes the proof.
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Proof of Theorem 1

Proof. For the sake of notational convenience, we write χjβ0,...,βj−1,βj+1,...,βp
≡ χ(u) for Q(β) as a

function of the jth coordinate with (β0, ..., βj−1, βj+1, ..., βp) being fixed. We first deal with the

j ∈ {1, ..., p} coordinates, then the intercept (0th coordinate) in the following arguments.

For j ∈ {1, ..., p}th coordinate, observe that

χ(u+ δ)− χ(u) = `(β0, ..., βj−1, u+ δ, βj+1, ..., βp)− `(β0, ..., βj−1, u, βj+1, ..., βp)

+ ρ(|u+ δ|)− ρ(|u|) (34)

= ∇j`(β0, ..., βj−1, u, βj+1, ..., βp)δ +
1

2
∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp)δ

2

+ o(δ2) + ρ′(|u|)(|u+ δ| − |u|) +
1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2, (35)

with |u∗| being some number between |u+ δ| and |u|. Notation ∇j`(β0, ..., βj−1, u, βj+1, ..., βp) and

∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp) denote the first and second derivative of the function ` w.r.t. the

jth coordinate (assuming to be existed by condition (1)).

We re-write the RHS of (35) as follows:

RHS(of 35) = ∇j`(β0, ..., βj−1, u, βj+1, ..., βp)δ + (∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp)−M)δ2

+ ρ′(|u|)sgn(u)δ

+ ρ′(|u|)(|u+ δ| − |u|)− ρ′(|u|)sgn(u)δ +
1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2

+ (M − 1

2
∇2
j`(β0, ..., βj−1, u, βj+1, ..., βp))δ

2 + o(δ2). (36)

On the other hand, the solution of the jth coordinate (j ∈ {1, ..., p}) is to minimize the

following function,

Qj(u|β) = `(β) +∇j`(β)(u− βj) +
1

2
∇2
j`(β)(u− βj)2 + ρ(|u|), (37)

By majorization, we bound ∇2
j`(β) by a constant M for standardized variables. So the actual

function being minimized is

Q̃j(u|β) = `(β) +∇j`(β)(u− βj) +
1

2
M(u− βj)2 + ρ(|u|). (38)

Since u is to minimize (38), we have, for the jth (j ∈ {1, ..., p}) coordinate ,

∇j`(β) +M(u− βj) + ρ′(|u|)sgn(u) = 0, (39)
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Because χ(u) is minimized at u0, by (39), we have

0 = ∇j`(β0, ..., βj−1, u0 + δ, βj+1, ..., βp) +M(u0 − u0 − δ) + ρ′(|u0|)sgn(u0)

= ∇j`(β0, ..., βj−1, u0, βj+1, ..., βp) +∇2
j`(β0, ..., βj−1, u0, βj+1, ..., βp)δ + o(δ)

− Mδ + ρ′(|u0|)sgn(u0), (40)

if u0 = 0 then the above holds true for some value of sgn(u0) ∈ (−1, 1).

Observe that ρ′(|x|) ≥ 0, then

ρ′(|u|)(|u+ δ| − |u|)− ρ′(|u|)sgn(u)δ = ρ′(|u|)[(|u+ δ| − |u|)− sgn(u)δ] ≥ 0 (41)

Therefore using (40, 41) in (36) at u0, we have, for j ∈ {1, ..., p},

χ(u0 + δ)− χ(u0) ≥
1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2

+ δ2(M − 1

2
∇2
j`(β0, ..., βj−1, u0, βj+1, ..., βp)) + o(δ2)

≥ 1

2
Mδ2 +

1

2
ρ
′′
(|u∗|)(|u+ δ| − |u|)2 + o(δ2). (42)

By condition (ii) of the MMCD algorithm inft ρ
′′(|t|;λ, γ) > −M and (|u + δ| − |u|)2 ≤ δ2.

Hence there exist θ2 = 1
2
(M+infxρ

′′
(|x|)+o(1)) > 0, such that for the jth coordinate, j ∈ {1, ..., p},

χ(u0 + δ)− χ(u0) ≥ θ2δ
2. (43)

Now consider β0, observe that

χ(u+ δ)− χ(u) = `(u+ δ, β1, ..., βp)− `(u, β1, ..., βp)

= ∇1`(u, β1, ..., βp)δ +
1

2
∇2

1`(u, β1, ..., βp)δ
2 + o(δ2)

= ∇1`(u, β1, ..., βp)δ + (∇2
1(`(u, β1, ..., βp)−M)δ2

+ (M − 1

2
∇2

1`(u, β1, ..., βp))δ
2 + o(δ2), (44)

By similar arguments to (40), we have

0 = ∇1`(u0 + δ, β1, ..., βp) +M(u0 + δ − u0)

= ∇1`(u0, β1, ..., βp) +∇2
1`(u0, β1, ..., βp)δ + o(δ)−Mδ. (45)
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Therefore, by (44, 45), for the first coordinate of β

χ(u0 + δ)− χ(u0) = (M − 1

2
∇2

1`(u0, β1, ..., βp))δ
2 + o(δ2)

=
1

2
Mδ2 +

1

2
(M −∇2

1`(u0, β1, ..., βp))δ
2 + o(δ2)

≥ 1

2
δ2(M + o(1)). (46)

Hence there exists a θ1 = 1
2
(M + o(1)) > 0, such that for the first coordinate of β

χ(u0 + δ)− χ(u0) ≥ θ1δ
2. (47)

Let θ = min(θ1, θ2), using (43,47), we have for all the coordinates of β,

χ(u0 + δ)− χ(u0) ≥ θδ2, (48)

By (48) we have

Q(βm−1j )−Q(βm−1j+1 ) ≥ θ(βmj+1 − βm−1j+1 )2

= θ ‖ βm−1j − βm−1j+1 ‖22, (49)

where βm−1j = (βm1 , ..., β
m
j , β

m−1
j+1 , ..., β

m−1
p ). The (49) establishes the boundedness of the sequence

{βm} for every m > 1 since the starting point of {β1} ∈ Rp+1.

Apply (49) over all the coordinates, we have for all m

Q(βm)−Q(βm+1) ≥ θ ‖ βm+1 − βm ‖22 . (50)

Since the (decreasing) sequence Q(βm) converges, (50) shows that the sequence {βk} have a

unique limit point. This completes the proof of the convergence of {βk}.

The assumption (3) and (4) of Lemma 1 holds by (50). Hence, the limit point of {βk} is a

minimum of Q(β) by Lemma 1.

This completes the proof of the theorem.
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Table 1: Comparison of computational efficiency for adaptive rescaling approach and the MMCD

algorithm in MCP penalized logistic regression models. Average and standard error (SE) are

computed based on 100 replicates for datasets with n = 100 and p = 1, 000. IN, SP, PC, AR and

CS are the five correlation structures among the penalized variables considered in the article. The

time is measured in seconds.

Algorithm IN(SE) SP(SE) PC(SE) AR(SE) CS(SE)

SNR 4.34(0.03) 3.10(0.02) 3.90(0.02) 3.19(0.02) 3.05(0.02)

MMCD 188.64(0.89) 105.98(0.56) 107.78(0.49) 119.51(0.55) 107.08(0.42)

Adap Rescaling 374.18(1.38) 201.93(1.10) 206.11(1.14) 223.13(1.13) 206.74(1.40)
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Table 2: Comparison of Lasso, SCAD and MCP in terms of model size (MS), false discover rate

(FDR) and predictive AUC (P-AUC). Average and standard error are computed based on 1,000

replicates. The sample size in the training data is n = 100. Predictive AUC is the maximum

predictive AUC of the validation dataset, which contains 2,000 observations from the same model

generating the training data.

Structure Penalty SNR MS(SE) FDR(SE) P-AUC(SE)

IN Lasso 4.332 13.63 (0.34) 0.5908 (0.0067) 0.8315 (0.0012)

SCAD 9.92 (0.25) 0.4451 (0.0078) 0.8558 (0.0010)

MCP 7.95 (0.23) 0.3143 (0.0088) 0.8562 (0.0010)

SP Lasso 3.069 18.40 (0.47) 0.6841 (0.0063) 0.7712 (0.0017)

SCAD 7.14 (0.19) 0.3942 (0.0073) 0.8177 (0.0012)

MCP 6.10 (0.17) 0.2983 (0.0076) 0.8185 (0.0012)

PC Lasso 3.879 8.60 (0.22) 0.4330 (0.0067) 0.8726 (0.0006)

SCAD 6.30 (0.14) 0.3311 (0.0068) 0.8806 (0.0005)

MCP 5.78 (0.13) 0.2743 (0.0069) 0.8807 (0.0005)

AR Lasso 3.204 6.01 (0.15) 0.4774 (0.0079) 0.8182 (0.0012)

SCAD 4.83 (0.13) 0.3497 (0.0087) 0.8391 (0.0009)

MCP 3.78 (0.11) 0.2214 (0.0081) 0.8394 (0.0009)

CS Lasso 3.049 17.72 (0.49) 0.6792 (0.0063) 0.7723 (0.0016)

SCAD 8.70 (0.28) 0.4468 (0.0083) 0.8086 (0.0015)

MCP 7.32 (0.25) 0.3481 (0.0089) 0.8098 (0.0014)
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Table 3: Application of Lasso, SCAD and MCP in a microarray dataset. The average and standard

error are computed based on the 900 split processes. The predictive AUC is calculated as the

maximum predictive AUC of the validation dataset created by the random splitting process. In

each split process, approximately n = 100 samples are assigned to the training dataset and n = 200

samples into the validation dataset.

Solution surface p-AUC(SE) MS(SE)

Lasso 0.7523 (0.0010) 46.97 (0.53)

SCAD 0.7563 (0.0010) 34.48 (0.51)

MCP 0.7565 (0.0010) 34.85 (0.50)
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Figure 1: Penalty functions and threshold operator functions of Lasso(left), SCAD(middle) and MCP(right). The

first row shows the penalty functions and the second row shows the operator functions. Lasso shrinks all coefficients

without distinction. SCAD and MCP release the rate of penalization for larger coefficients. MCP reduces to Lasso

if γ → +∞ and converges to hard-threshold penalty if γ → 1. SCAD converges to Lasso when γ → +∞.
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Figure 2: SCAD penalty and its majorizations, LQA, Perturbed LQA (PLQA) and LLA. The left plot is majorized

at t = 3, the right one is majorized at t = 1. In the PLQA, τ0 is chosen to be 0.5. All the curves are plotted using

γ = 4 and λ = 2 for better illustration effect.
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Figure 3: Plots of solution paths along κ . Plot a are paths for a causal variable, while b are paths for a null

variable. Observe that although Lasso tends to over select in some cases, it could fail to select certain variables,

which are selected by MCP (dash line in plot a).
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